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The equilibrium shape of a small particle on a substrate where the particle can sink into
the substrate is evaluated.

I. INTRODUCTION

Small particles on supports have been of interest
for many years both scientifically and with respect to
their uses in heterogeneous catalysis. One of the com-
mon and often critical questions is the shape of a small
particle, i.e., spherical or faceted, since many of the
properties depend upon the relative populations of dif-
ferent surface planes and edges. The question of the
equilibrium shape of an unsupported small particle was
solved many years ago first by Wulff,1 with later theo-
retical proofs in a continuum model by von Laue2

and Dinghas3 (see also Herring4). The extension to a
supported particle on an infinitely flat substrate was
given by Winterbottom,5 and to twinned particles by
Marks.6'7 However, in all of these models to date the
substrate has either been ignored or assumed to be in-
finitely flat and this latter assumption is really very du-
bious; in any real system diffusion can as easily change
the substrate as the particle, and one should include
this possibility. In some recent experimental work on
small gold particles on MgO8 we observed that indeed
the substrate can change, and there are indications that
a small particle can 'sink' into a substrate; see, for in-
stance, Fig. 1. (We feel that it is useful to draw analo-
gies to particles floating on a liquid and in this sense
we will use the idea of sinking and buoyancy. Of
course, gravity is not playing any role in the physics of
the process.) As part of this work we employed a very
simplified model to explain the physical source of sink-
ing as an intermediate between the particle wetting the
substrate and the substrate wetting the particle.

The purpose of this paper is to improve upon the
theoretical model, and consider explicitly the equi-
librium shape of a particle where the particle can par-
tially sink into the substrate, i.e., a buoyant particle. In
general, the problem does not appear to have a simple
analytical solution, but we will show that with some
assumptions about the directional dependence of the
surface free energies it can be solved in a closed form
by using an approach previously introduced for twinned
particles by one of us.6'7

II. ANALYSIS

The problem that we are concerned with is the
equilibrium shape of a small particle when we are

specifically including the possibility that the particle
can partially sink into the substrate. We will specifi-
cally not consider the kinetics of the process for the
moment, which could readily lead to quite different re-
sults. It is important to define our notation for the dif-
ferent free energy terms:

T— the free energy per unit area of the substrate,
explicitly a function of the surface normal.

y—the free energy per unit area of the particle,
implicitly a function of the facet normal.

£—the free energy of creating an interface by join-
ing a unit area of free particle surface and free sub-
strate surface. This is also implicitly a function of the
facet normal for a given epitaxial orientation, and is
implicitly negative.

hj—the normal distance to t h e ; facet.
hs—the normal distance to the substrate surface.
Aj—the area of t h e ; facet.
As—the cross-sectional area of the particle in the

substrate surface plane.
For the model we will employ two approximations:
(1) We will assume that the substrate is large com-

pared to the size of the particle. With this approxima-
tion, one can readily show that the change in surface
energy due to redistribution of the volume displaced
by the particle of substrate material is of the order
of TVp/V113 where Vp is the volume displaced and V
the total substrate volume; this is small and can be
neglected. This assumption should be valid in most
real systems.

(2) We will assume that £ and V are proportional to
y with proportionality constants independent of facet
orientation. This is a relatively severe approximation,
but without it no simple analytical solution appears to
exist. Note that if we were to use a simple model, such
as a broken bond model, this approximation is not too
severe. We will later on discuss some of the possibilities
if this assumption is relaxed.

Using an approach similar to that of van Laue,2 we
can write the problem to be solved as one of minimizing:

F = j - TAS - 2A (1)

See, for instance, Fig. 2. We now employ an approach
similar in spirit to that used for a modified Wulff con-
struction;6'7 namely, we make a mathematical cut of the
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FIG. 1. High resolution electron microscopy images of a small gold particle sinking into MgO substrate material during 40 min of observa-
tion, taken from Ajayan and Marks.8

particle in the plane of the surface, partitioning the
term involving F into two terms aT for below the sub-
strate and (1 - a)T for above the substrate. We can
then rewrite the problem as involving minimizing:

F = Fa + Fb (2)

where Fa is for the region above the surface:

Fa = 1,71 Aj - (1 - a)TAs

hjAj - h!A,\ (3)

and Fb is for the region below the surface, i.e.:

Fb = 2 (7; + £ + TJ)AJ - aTAs

- 2AJ 2 hjAj, + hb,A,\ (4)

Fa and Fb are independently minimized or only the sum
of the two. We will first consider independent mini-
mization, which is simple since both Eqs. (3) and (4) are
Wulff problems for which the solutions are given by:

Jj

aT

= kahj

= kbhj

= -kah
a

s

= -\bh
b
s

(5)

(6)

(V)

(8)

There are two possible types of solutions: either both

Equations (5)-(8) indicate that we have Wulff construc-
tions for the top and bottom parts independently, but
the scale of the two Wulff constructions can be differ-
ent. To determine the relative scales, which is deter-
mined by the ratio of Aa and kb, we require that the
length of any facet which is common to both the top
and bottom parts is the same, and that the two parts fit
together. In general, the only way that the two parts
can fit together is if the Wulff centers (after scaling by
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FIG. 2. Schematic of the construction used in the analysis of the
free energy minimization problem, showing the decomposition of
the particle into two parts. Wa and Wb are the independent Wulff
centers for the top and bottom parts.

Aa, A6) are the same, in which case:

A»/AB = ytHr/i + £ + T;)

and

hb = —h"iis — ns

(9)

(10)

a = -%/(£• + r,) (11)

The shape that we have generated is in fact very simple;
it is a Wulff construction for an isolated particle of unit
scale (Afl = 1) with the interface located a distance
r ( £ + yi + r ;)/(£ + r,) above the Wulff center; see
Fig. 3.

We have found a stationary value of F; the question
now is whether this is a true minimum, a saddle point,
or a point of inflection. The minimization problem can
also be written as minimizing S/V2/3 where S and V are,
respectively, the total surface free energy including the
substrate term and the volume for top and bottom
parts. For a true minimum, for any perturbation of the
shape we require that

8Sa + 8Sb > 2S(8Va + 8Vb)/3(Va + Vb)

= 2{8Va + 8Vb) (12)

(Note that for a Wulff construction of unit size S = 3V.)
We can demonstrate that we have a true minimum by
considering different types of deformations of the
shape and showing that they all obey Eq. (12). There
are three different types of deformation:

(1) A deformation of top or bottom only which
does not alter the substrate cross-sectional area. This is

FIG. 3. Wulff construction solution to the problem with the ap-
proximations stated in the text.

equivalent to a deformation of the vacuum Wulff con-
struction and is therefore toward higher energy; see, for
instance, Fig. 4.

(2) A deformation which changes the substrate in-
tersection cross-sectional area and does not transfer
volume between the top and bottom. This can always
be treated (by rescaling) as a deformation which in-
creases the volume V; see, for instance, Fig. 5. Indepen-
dently, the top and bottom can both be considered as
Winterbottom constructions which independently sat-
isfy for a given value of the cut a

8S > 2S8V/3V (13)

so that for this type of deformation the change in
surface free energy is unconditionally positive and
therefore,

SSa + 8Sb > (VaSSa + Vb8Sb)/(Va + Vb)

> 2S{8Va + 8Vb)/(Va + Vb) (14)

which is toward higher energy.
(3) The only possible remaining deformation is one

which involves movement of the effective substrate
height (Fig. 6)—in other words, transfers volume from
the top to the bottom or vice versa. For the modified
Wulff construction it was argued that for the analogous
case where the substrate plane is replaced by a twin
boundary, the fact that the twin boundary energy was
small relative to the external facet free energy intro-
duced a constraint which eliminated this mode of defor-
mation. This constraint effect was proved by more
detailed numerical calculations.910 Here we can prove
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FIG. 4. Deformation of the top or bottom only which is mathe-
matically equivalent to a deformation of the vacuum Wulff con-
struction, resulting in an increase in energy dE.

the existence of a minimum more strongly. This type of
deformation is equivalent to moving the substrate
height with respect to the Wulff center, plus some
changes to the outer surface. All components of the de-
formation in addition to moving the substrate height
are toward higher energy since they can be considered
as deformation types (a) or (b) above. Therefore the
only possible mode of this deformation which could re-
duce the surface free energy is moving the substrate
height without any other shape changes, which is a de-
formation at constant volume. Considering a motion of
the substrate plane upward by Sh, the change in the
surface free energy due to the outer surface can be
written as

dS/dh = + £• +
- rdAs/dh (15)

sv

FIG. 5. Deformation of the substrate cross section, which can be
treated as a volume increase of 8V by rescaling.

FIG. 6. Deformation involving movement of the substrate posi-
tion with respect to the particle.

(16)

(17)

(18)

Using X hidAi/dhk = Ak, see Dinghas2

dS/dh = {(£• + T,)MA,

- (r + A*[(£ + rd/y,]dA,/dh

so that

dtyd*2 = - ( r + h»Mi + r,)/yi]d2>l,/dA2)

or at the stationary modified-Wulff value

d2S/dh2 = -F( l + [(£• + H + y,)/yi]d2A,/dh2

(19)
Since 4̂S and F are positive, and for a convex Wulff
construction the second derivative is always negative,
then if (£• + T; + y;)/y, > - 1 the solution is always a
minimum. Note that (£• + T, + y;)/y, < - 1 implies that
the adhesion between the particle and substrate is suffi-
ciently strong that it is more favorable for the particle to
be completely buried by (sink into the) substrate. This
condition is a little too strong, and from Eq. (9) we can
place better limits on the solution, namely:

(£, + I]' + y,)/y, < - 1 Particle buried in
the substrate (20)

0 < (£ + Tt + y,)/y,- > - 1

(6 + G + y,)/y« > 0

(6 + E + yO/y* -» co

(Tt + 2y,) < 0

Top surface only
exposed (21)

Buoyant
particle (22)

Particle floating on
the substrate (23)

Particle wets the
substrate (24)

Since all possible deformations of the shape are
toward higher energy, we have proved that the shape
generated previously is a minimum.

III. DISCUSSION

With the above analysis we have solved, albeit for
a restricted set of surface free energy conditions, the
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equilibrium shape of a buoyant small particle. In addi-
tion to conditions for particle wetting the substrate and
the substrate wetting the particle, the real shape of a
particle in equilibrium is partially submerged into the
substrate. It is very important to stress that we are con-
sidering the equilibrium shape of a particle, and there
are numerous physical constraints on achieving equi-
librium; the particle must be in equilibrium with its
vapor and the single atom population on the substrate
and the substrate must be in equilibrium with its vapor.
As perhaps most clearly demonstrated by Metois and
Heyraud,11 equilibrium is only occasionally reached.
The same conclusion can be drawn from our own ex-
periments; see, for instance, Fig. 1. Thermodynami-
cally, the results in the figure do not correspond to
minimizing the MgO surface free energy, but the kinet-
ics of the process are dominating the process. The ki-
netics are going to be dominated by the relative speeds
of surface and bulk diffusion of the substrate, and de-
pending upon these we can envisage a number of differ-
ent kinetic routes, as illustrated in Fig. 7. Clearly, this
would be a good problem for numerical simulations.
Despite this, the results shown are in fact in reasonable
agreement with the theoretical predictions. For in-

Vacuum

Substrate

V

V
"s

FIG. 7. Illustration of different kinetic paths for a particle sinking
into a substrate. Depending upon the relative rates of surface
and bulk diffusion, a floating particle might either 'sink' by
being encapsulated by surface diffusion of the substrate or via
bulk diffusion.

FIG. 8. Tracing of the particle in Fig. l(c), showing that there is an
approximate Wulff center. The tracing has an error of ± atomic
layer.

stance, shown in Fig. 8 is a tracing of the particle in
Fig. l(b), which indicates that there is close to a true
Wulff center for the particle.

What about the situation when the conditions for
the surface free energies are relaxed? We can here draw
from the arguments used for the Modified Wulff con-
struction.7 We can represent the energy as a function of
shape as a potential energy surface with a constraint
that the top and bottom segments fit together. Rather
than one simple minimum without the constraint, we
can have a whole family of minima in the presence of
the constraint. In fact, it does not follow that there
exists one simple minimum at all; there may very well
be many. We would draw here from our experience to
date in calculating parts of this potential energy sur-
face,910 which clearly demonstrated that this is the case.
In addition, the experimental results also support this
conclusion; in Fig. 1 the development of a twin in (c)
and (d) can be clearly seen.

In conclusion, changes in the substrate should be
taken into account when considering the equilibrium
shape of a small particle. However, application of equi-
librium theories to small particles should be done with
substantial care since the correct approach to small
particles is via a potential energy surface.
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